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Abstract—Previous research has shown that centralized net-
work control in Wireless Sensor Networks (WSNs) can lead to
improved network lifetime, benefit reliability, help to diagnose
and localize network failures, assist network recovery, and lead
to optimal routing and transmission scheduling. A stepping stone
to centralized network control is to build and maintain a complete
network topology model that scales and reacts to the network
dynamics that occur in low-power wireless networks. We propose
SMOG as a mechanism to build and maintain a centralized
full network topology model using probabilistic data structures.
Extensive analysis of the proposed approach in both simulation
and two testbeds shows that SMOG can build a complete model
of a WSN of over 100 nodes with 98% accuracy in less than
four minutes. Our approach also offers fast recovery from heavy
network interference, recovering model accuracy to 98% in less
than two and a half minutes.

I. INTRODUCTION

Centralized network control in Wireless Sensor Networks

(WSNs) has many advantages in terms of improved network

lifetime, reliability, and delay [1]. Centralized control can also

determine, localize, and diagnose network failures, and help

with network recovery [2]. It has also been applied to routing

in WSNs [3], [4], [5]. Standards for industrial WSNs such

as ISA100.11a [6] and WirelessHART [7] take advantage of

centralization to build Time-Slotted-Channel-Hopping (TSCH)

schedules, and disseminate routes in the network that can meet

strict industrial application requirements.

A first step towards centralized network control is to build

and maintain a complete network topology model that scales

and reacts to the common network dynamics that occur in low-

power wireless networks. Previous approaches such as [1], [4]

build partial network models, therefore limiting the amount

of network-wide decisions that can be taken. On the other

hand, WirelessHART appears to have scalability issues still

to be addressed [8]. These limitations encouraged us to study

and analyze this problem by creating a mechanism to build

and maintain an accurate and complete centralized network

topology model that scales, is reactive, and adds low overhead.

Here, we propose SMOG, a mechanism to build and main-

tain a centralized full network topology model using proba-

bilistic data structures, specifically, Bloom filters. The network

model captures in a binary matrix the network’s connectivity

map. Nodes use a suitable protocol to discover and maintain

neighborhood information, i.e., the nodes belonging to their

neighborhood, which is reported using the probabilistic data

structure to populate the model at a central point, e.g., base

station or sink. Three different modes of operation are consid-

ered for reporting neighborhood information. We analyzed the

possible inconsistencies that can occur between the physical

network topology and the model due to the probabilistic

behavior of wireless links as well as due to the use of the

probabilistic data structures. We have studied the implications

of these inconsistencies on the accuracy of the model and

have extensively evaluated SMOG’s behavior in simulations,

focusing on scalability, and in two different WSN testbeds,

focusing on SMOG’s responsiveness under realistic channel

conditions. Our analysis shows that SMOG is able to build a

complete model of a dynamic WSN with 100 nodes (Indriya

testbed [9]) from scratch in less than 4 minutes with over 98%
accuracy. Furthermore, we analyzed the impact of interference

on maintaining the network model accuracy. We created severe

interference in FlockLab [10] to introduce network changes

and found that SMOG can recover up to 98% accuracy in less

than 2.5 min. We believe that our evaluation results greatly

assist in better understanding the possibilities and limitations

of building and maintaining complete and accurate centralized

network topology models for network-wide optimization and

flow scheduling.

The remainder of this paper is organized as follows. Sec-

tion II introduces SMOG, its requirements, and its dependen-

cies along with the design of SMOG and its core mechanisms.

Section III presents and discusses the results of our extensive

evaluation in simulation and testbed experiments. We review

related work in Section IV, provide a discussion and outlook

in Section V, and conclude in Section VI.

II. SMOG DESIGN

SMOG is a mechanism to build and maintain a complete and

accurate centralized network topology model using probabilis-

tic data structures. SMOG collects neighborhood information

from every node in the network at a central entity, e.g., base

station or sink, which processes this information and updates

the model. To be useful for centralized network control, the

network model created using SMOG needs to accurately reflect

the underlying network topology. Also, SMOG should be

reactive to network changes and should be able to reliably and

rapidly detect these changes and update the model. It needs to

be scalable to work with large networks and is designed for

low-power wireless networks that need to be energy-efficient
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Fig. 1. Modes of Operation (MOPS). Eventful and stateful react to neighbor events, while periodic is unresponsive to them.

for long battery life. Hence, SMOG needs to add low overhead

in terms of energy consumption.

SMOG relies on underlying network protocols that build

routes to the central entity to report SMOG messages, and

enable nodes to discover and maintain their neighbors. In our

case, we use RPL [11] to discover and maintain neighbors and

build routes to the central entity. We use IPv6 NDP [12] to

detect neighbor unreachability. Moreover, we use RPL infor-

mation to improve the accuracy of our model. However, the

main ideas behind SMOG are independent of RPL and NDP.

Hence, SMOG should be easy to adapt to other constrained

wireless network technologies that require a mechanism to

build and maintain an accurate centralized network model.

Next, we describe the design of SMOG. We begin with a

description of the SMOG model and its core mechanisms. We

then introduce the possible inconsistencies and the metric we

define to assess the accuracy of the model.

A. Model

Given a WSN, let DR = (VR, ER) be the directed graph

that represents its physical connectivity, where VR is its non-

empty set of vertices representing the nodes, and ER its set

of edges representing the directed links. As we wanted to

account for the presence of link asymmetries, we opted for a

directed graph. Network protocols perceive the one-hop (local)

neighborhood of each node. Let Dl = (Vl, El) be the directed

graph that represents the logical network topology built by

composing these local neighborhoods. According to [13], at a

certain point in time, Dl may not be consistent with DR.

Our focus in SMOG is to collect at a central entity the logical

network topology (Dl) to build and maintain an up-to-date and

accurate network model, denoted by Ds = (Vs, Es). Ideally,

Ds = Dl, but packet loss and delays can introduce differences

between these two graphs.

B. Mechanisms

This section describes the core mechanisms of SMOG, that

is: 1) its Modes of Operation (MOPS), 2) Bloom filters (BF),

and 3) a False Positive (FP) Discovery Mechanism.

1) Modes of Operation (MOPS): Dynamic network con-

ditions generate neighbor change events. Any such change

must be detected and reliably reported to the central entity for

updating the network model, as this affects the accuracy of the

model and might have an impact on higher layer applications

that depend on SMOG. Hence, reliability and reactivity are

two requirements for the design of SMOG. To this end, we

define three modes of operation for reporting neighborhood

information: i) eventful: an event triggers a message 1 to 5 s

after it occurred. If another event occurs before the message

is sent, the previous message is suppressed and a new SMOG

message is scheduled. ii) periodic: a message is sent during

the second half of a static interval of 5 min. iii) stateful:
an event triggers the same behavior as in eventful but with

larger intervals (10 to 15 s). In the absence of events, SMOG

messages are sent during the second half of a dynamic interval

(2 to 20 min). To limit overhead, if no events occur the interval

doubles, eventually reaching the maximum of 20 min. When

neighbor events occur, the interval halves, eventually reaching

the minimum of 2 min. The randomized transmission included

in all MOPS is used to avoid collisions. Figure 1 further

illustrates how each MOP reacts to neighbor events. The choice

between eventful, periodic, and stateful should be left to the

user of SMOG, balancing the network’s dynamicity against the

requirements of higher layer applications.

2) Bloom Filters: Explicitly reporting neighbor changes has

disadvantages. First, losing a report on a recent event results in

the central model not reflecting the neighbor change unless an

extra mechanism, e.g., end-to-end ACKs, is used. Secondly,

reporting the whole neighborhood of a node can become

prohibitive for dense networks. In a 6LoWPAN network, a

single node with 40 neighbors would have to report 40 IPv6

or IEEE 802.15.4 MAC addresses. On the other hand, we

can envisage a solution in which a node reports only a

subset of the neighborhood, but this results in having partial

network models. SMOG overcomes these disadvantages by

using Bloom filters (BFs) to compress the whole neighborhood

information of a node into a single bit array. As a consequence,

nodes report BFs instead of neighbor addresses or identifiers.

BFs are space-efficient probabilistic data structures that can be

used for set insertion and membership query [14], [15]. A BF

is an m-bit array. To insert an element into a BF, we apply k
hash functions to the element, obtaining the k positions to be

set in the array. To check if the BF contains an element, we

check if the k bits obtained by hashing that element are set in

the array. BFs determine if an element either is definitely not
in the set or may be in the set. Therefore, BFs produce False

Positives (FP), which makes the SMOG model probabilistic.
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For specific m, k, and n elements inserted in the BF, the

probability of having a FP is defined as in [14]:

p =

(
1−

(
1− 1

m

)kn
)k

(1)

We analyze the feasibility of using BFs with SMOG by

checking their false positive rate with two configurations:

i) m = 128 bits, k = 4, and ii) m = 256 bits, k = 8.

The value of k was selected to minimize p, given m and

for n = 20. To obtain k hash functions, we split a single

Shift-add-XOR (SAX) hash function into k hashes, as in [15].

In our test, we insert IEEE 802.15.4 MAC addresses into a

BF and we compare the FP rate obtained with SAX to the

theoretical bound obtained from Eq. (1). Figure 2 shows a

close fit between real and theoretical FP rate. This makes BFs

a good solution to compress the entire local neighborhood

information of a node into a single bit array that fits in a

packet.

In SMOG, nodes start with an empty BF, and then add MAC

addresses to it as neighbors are discovered. When a neighbor

is removed, the whole BF is recomputed as BFs do not support

delete operations. Then, nodes report BFs together with their

total number of neighbors, their preferred parent MAC address,

and the RPL Rank, i.e., distance to the RPL root using a cost

function [11]. Upon message receiving, the sink computes the

neighbors of the sender by checking the MAC addresses that

are already in the network model (Ds) against the BF. This

results in a set of possible neighbors. Before updating this set

in the network model, the False Positive Discovery Mechanism

is activated.
3) False Positive Discovery Mechanism: Because of the

FPs produced by BFs, network-wide decisions or flow schedul-

ing relying on the network model can be wrong. To overcome

this, we designed a false positive discovery mechanism to

detect and remove FPs. Let Sb be the set of possible neighbors

of a node, computed as explained in the previous section

(II-B2), with sb = |Sb| elements. Let s = |S| be the number

of neighbors reported by the same node. Then, if sb > s, the

difference sb − s constitutes the number of FPs. Knowing the

number of FPs, the next step is to discover them. For this, we

define three rules: i) parent: the preferred parent reported

is the only certain neighbor, ii) neighbor semi-reciprocity:

if node A is a neighbor of B, B may be a neighbor of A,

iii) rank: the RPL rank [11] distance between two nodes must

be ≤ 2×MinHopRankIncrease.
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These rules are applied in sequence to the set of possible

neighbors (Sb), generating three subsets Sp, Ssr, and Sr. The

neighbor semi-reciprocity rule is not a strict rule, because links

can be asymmetrical and the respective neighbors can also

have FPs. The other two rules are strict, unless rank values

are outdated. The set of neighbors of a node in the model

(SM ) is computed as Sp ∪ Ssr ∪ Sr. If the union set still

contains FPs, we reduce SM to Sp ∪Sr. It must be noted that

this mechanism is not guaranteed to eliminate all FPs. In fact,

if |SM | < s, it means that real links are missing or have been

removed. However, making central decisions using links that

are not available (FP) will always fail, whereas not considering

available links will at worst achieve sub-optimality.

C. Model Accuracy

We describe the possible inconsistencies that might arise

between Ds, the network model built by SMOG, and Dl, the

logical network, and their impact on the model accuracy. We

define: 1) the types of inconsistencies, and 2) the model

accuracy metric as a function of the inconsistencies.

1) Inconsistencies: Differences between Dl and Ds consti-

tute the inconsistencies. These can arise from several reasons,

e.g., packet delay or loss. We classify the possible inconsis-

tencies as follows: i) Missing Node: a node that exists in Dl

and is not contained in Ds, ii) Missing Link: a link that exists

in Dl and is not contained in Ds, and iii) False Positive Link:

a link that exists in Ds and is not contained in Dl. Figure 3

shows the impact of the possible types of inconsistencies on

the Ds adjacency matrix. A Missing Node inconsistency affects

2|Vl| − 1 elements, while a Missing Link or a False Positive
Link only affects one element of the matrix.

2) Model Accuracy Definition: To be useful, SMOG should

build and maintain a network model (Ds) that accurately rep-

resents the logical network topology (Dl). The inconsistencies

that appear over time affect the accuracy of the model. To

appropriately understand the accuracy of the model achieved
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by SMOG, we define the Model Accuracy metric, Ma(t),
which reflects the total amount of differences between Ds

and Dl at time t. Denoting sij(t) and lij(t), with i, j ∈ N ,

i �= j, the elements of the adjacency matrices of Ds and Dl,

respectively, at time t, and n = |N | the total number of nodes

of Dl, we can define Ma(t) ∈ [0, 1] as:

Ma(t) = 1−
∑

i∈N
∑

j∈N |lij(t)− sij(t)|
n2 − n

(2)

Denoting Imn(t), Iml(t), and Ifp(t) the number of missing

node, missing link, and FP inconsistencies, respectively, at

time t, Eq. (2) can be redefined as:

Ma(t) = 1− Emn(t) + Iml(t) + Ifp(t)
n2 − n

(3)

Where Emn(t) = n2 − (n − Imn(t))
2 − Imn(t) − I∗ml(t)

penalizes the effect of having missing node inconsistencies

without taken into account neither the main diagonal elements

nor the missing links associated to missing nodes (I∗ml(t)).
According to Eq. (2), the absence or presence of a link has

the same impact on the model accuracy. As a consequence, for

a network with graph density, ρ = 0.2, 80% of the elements of

its adjacency matrix are zero. This potentially allows SMOG

to reach Ma(t) ≥ 80%.

III. EVALUATION

In this section, we present: A) the key metrics we looked at

to evaluate SMOG, B) our system integration, C) a simulation-

based evaluation to analyze the impact of network size and

density on SMOG, and D) a testbed-based evaluation, focusing

on effectiveness under realistic channel conditions.

A. Metrics

We consider three metrics to assess the performance of

SMOG: i) model accuracy, Ma(t), as defined in Section II-C2,

ii) end-to-end packet delivery ratio (PDR) per MOP, i.e., ratio

of SMOG messages received at the sink over those collectively

sent by the nodes, and iii) radio duty cycle, i.e., portion of

time spent with the radio on. The first metric accounts for

the accuracy of SMOG in building and maintaining the central

model, while the second provides a direct assessment of the

reliability of each MOP in reporting neighborhood information.

The third metric measures the energy consumption necessary

to build and maintain the model and ensure its reliability. To

further understand the overhead added by SMOG, we compare

the duty cycle per MOP to a baseline obtained with a Null

application running on top of RPL and NDP. Moreover, we

looked at the number of inconsistencies, i.e., number of differ-

ences between the logical network and SMOG model adjacency

matrices, and the reactivity, i.e., inconsistency duration.

B. System Integration

We used Contiki’s network stack with 6LoWPAN, RPL,

NDP, and ContikiMAC with a wake-up interval of 125 ms.

SMOG sent its messages on top of UDP. Neighbor reachability

was confirmed with Link Layer ACKs to reduce NDP traffic.

Neighbor lifetime is 10 min and we set the maximum number

of neighbors to 40 to avoid further neighbor changes due

to neighbor cache limitations. The MOPS and Bloom filters

used are as described in Section II. The duty cycle baseline

application uses exactly the same parameters in 6LoWPAN,

RPL, NDP, and ContikiMAC for a fair overhead comparison.

We log every neighbor change to compute offline the logical

network topology (Dl) and compare it to the SMOG network

model (Ds) over time. Thus, Imn(t), Iml(t), Ifp(t), and

Ma(t) can be obtained at any point in time.

C. Simulation-based Evaluation

To carry out a fine-grained analysis of SMOG’s behavior

in a controlled environment, we ran a set of experiments in

Cooja, focusing on scalability under favorable radio conditions

to isolate the impact of the network size and density on SMOG.

1) Simulation Settings: We emulated square grid network

topologies with sizes ranging from 4 to 121 nodes, and

different network densities, from 3.64 to 16.16 on average,

for the 121-node network. Note that changing the network

size or density in a square grid network changes the network

diameter. The sink, i.e., RPL root, was placed in a corner

to maximize the network diameter. In our simulations, we

resorted to the Unit Disk Graph Medium (UDGM) radio model

provided by Cooja (commonly used in the literature) to isolate

the impact of the network size and density on SMOG. We used

two BF configurations: i) m = 128 bits and k = 4 hash

functions, and ii) m = 256 bits and k = 8 hash functions.

The size of the BF and the number of hash functions have

an impact of the FP rate as shown in Section II-B2 and as

a consequence, can affect the model accuracy achieved by

SMOG. The values of k set for the BFs minimize the FP

rate for n = 20 neighbors. All experiments were carried out

over 20 minutes. Each configuration was tested five times for

statistical relevance. We present results from 390 experiments

with the MOPS and 65 experiments to compute the duty cycle

baseline.

2) Network Size: We evaluated the impact of the network

size on SMOG by changing the network size from 4 to

121 nodes. Figure 4 shows the average model accuracy at

t = 1200 s after the experiment was started and the network

became stable, the duty cycle, and the end-to-end PDR per

MOP with a BF of size m = 256 bits. We observe that periodic
and stateful achieve Ma(t = 1200s) = 100% with all network

sizes, while eventful’s accuracy decreases with increasing

network size to 92.88%. Due to the stable radio conditions,

in simulations, all neighbor events occurred at the beginning

of the experiments while the network was being built. The

resulting congestion reduced eventful’s end-to-end PDR to

80.97%, causing loss of model update messages. There were

no more events after this period, so the model could not be

updated, resulting in lower accuracy for the eventful MOP.

The message reporting periodicity of periodic and stateful
helped these MOPS achieve very high PDR (≥ 99.81% and

≥ 99.83%, respectively) and therefore, achieve such high

accuracy. On the other hand, the stable radio conditions and
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Fig. 4. Network Size Experiment: Model accuracy at t = 1200 s (left), duty cycle (centre), and end-to-end PDR (right) with Bloom filter size m = 256
bits and k = 8 hash functions.
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Fig. 5. Network Size Experiment: Model accuracy at t = 1200 s with Bloom
filter size m = 128 bits and k = 4 hash functions.

the lack of neighbor events, resulted in a duty cycle overhead

for eventful of 17.83% over the baseline for the network size

of 121 nodes. Periodic and stateful had a higher overhead due

to the periodic messages sent by both MOPS (≤ 30.65% and

≤ 31.35%, respectively).

Figure 5 shows the average model accuracy at t = 1200 s

with the BF configuration of size m = 128 bits. The duty

cycle and end-to-end PDR with both BF configurations are

very similar, and their results for the BF configuration of size

m = 128 bits are not shown. With this configuration, the

model accuracy achieved by periodic and stateful could not

reach 100% for the network size of 100 nodes due to 1 to 3
missing link inconsistencies per experiment.

With this particular setup, a FP appears when SMOG com-

putes the neighbors of a node. The FP Discovery Mechanism

detects, before adding the false positive link, that there is a FP

and in its effort to avoid having FP inconsistencies, removes

1 to 3 neighbors from the model (depending on RPL rank

values), creating missing link inconsistencies. This can be

explained by the increased FP rate with the BF configuration

of size m = 128. On the other hand, eventful decreased its

accuracy to 91.4% with the 121-node network.

The low network density in these experiments, ranging from

2 to 3.64 on average, decreased the chances of having false

positives and therefore enabled to achieve Ma(t = 1200s) ≥
99% with both BF configurations with periodic and stateful.

3) Network Density: We evaluated the impact of the net-

work density with a fixed network size of 121 nodes by

changing the radio range of the nodes, resulting in network

densities ranging from 3.64 to 16.16 on average. Figure 6

shows the impact of the network density on the key metrics

of SMOG with the BF configuration of size m = 256 bits.

Similar to the previous network size experiment, periodic and

stateful reach Ma(t = 1200s) ≥ 99.8% with all network

densities tested, while eventful’s accuracy also decreases, due

to the increased congestion and higher number of events.

The eventful accuracy reaches a minimum of 69.4% with an

average density of 6.94 neighbors. At this specific density

the network diameter was larger than at higher densities, and

the increased congestion led to the lowest eventful end-to-end

PDR of 62.84%. For the highest network density experiment,

due to the higher number of neighbor events to report, eventful
had a higher overhead than the other MOPS of up to 12.67%.

Stateful, despite being responsive to neighbor events, has a

very similar overhead to periodic. This can be explained by

the message suppression mechanism of stateful.
Figure 7 shows the average model accuracy at t = 1200 s

with the BF configuration of size m = 128 bits. With this con-

figuration, the accuracy with periodic and stateful decreases

to 96.6% and 96.9% at the highest density tested. The higher

density increased the appearance of FP inconsistencies with

that BF configuration. Additionally, the FP discovery mech-

anism in its effort to remove these inconsistencies, produced

missing link inconsistencies. Note that this is a consequence

of SMOG’s priority to remove FPs. On the other hand, with the

BF configuration of size m = 256 bits, FPs were rare and con-

sequently, periodic and stateful had no difficulties in achieving

such high accuracy. These results reiterate the importance of

selecting an appropriate BF configuration depending on the

network characteristics as discussed in Section II-B2.
Overall, the simulation experiments prove SMOG’s capa-

bility to build a complete and accurate centralized network

model that scales, at least, up to 121 nodes with different

network densities with periodic and stateful. The results show

scalability issues with eventful under the simulated network

conditions. Moreover, PDR and FP rate proved to be the main

reasons for decreased accuracy.

D. Testbed-based Evaluation
Next, we present an evaluation of SMOG in two different

WSNs testbeds, focusing on effectiveness under realistic net-

work conditions and dynamics, and the impact of interference.
1) Testbed Settings: We evaluate the behavior of SMOG in

Indriya [9] and FlockLab [10]. Indriya features a 100 TelosB

node deployment in a three-floor office building, and FlockLab

a 31 TelosB node deployment in a single floor of a university

building with three nodes outdoors. In both testbeds, we set

node #1 as the RPL Root and sink; we used Bloom filters

of size m = 256 bits and with k = 8 hash functions; we

used channel 26 to avoid cross-technology interference, e.g.,
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Fig. 6. Network Density Experiment: Model accuracy at t = 1200 s (left), duty cycle (centre), and end-to-end PDR (right) with Bloom filter size m = 256
bits and k = 8 hash functions.
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Fig. 7. Network Density Experiment: Model accuracy at t = 1200 s with
Bloom filter size m = 128 bits and k = 4 hash functions.

WiFi. The results we report in this section correspond to 153
experiments with the MOPS and 51 experiments to compute

the duty cycle baseline.

2) Network Dynamics: To analyze the impact of network

dynamics we ran a set of experiments with five transmission

(TX) powers, from −10 dBm to 0 dBm, resulting in networks

with different link qualities and of different densities, ranging

from 6.55 to 11.27 on average in Indriya and from 3.73 to

6.71 in FlockLab. All experiments lasted for 20 min. The

testbed results shown are averages with standard deviations.

Figure 8 shows the model accuracy at t = 1200s, duty cycle,

and end-to-end PDR in Indriya (top) and FlockLab (bottom).

We observe different trends compared to simulations, arguably

due to different network and channel conditions. Firstly, all

three MOPS achieve Ma(t = 1200s) ≥ 98.64% in Indriya

and Ma(t = 1200s) ≥ 99.22% in FlockLab with TX Power

≥ −3 dBm. In the testbeds, dynamic channel conditions pro-

duced neighbor events after network convergence, increasing

eventful’s accuracy up to 98.68% in Indriya and 99.78% in

FlockLab. Also, these neighbor events led to a higher duty

cycle in eventful and stateful w.r.t. the baseline, 15.06% and

31.26% respectively in Indriya, and 13.15% and 16.54% in

FlockLab at −3 dBm. Periodic, unresponsive to neighbor

events, had the lowest duty cycle overhead (≤ 10.21% in

Indriya and≤ 6.93% in FlockLab with TX Power≥ −3 dBm).

Secondly, we also observe that all MOPS, despite not achieving

very high end-to-end PDR (≤ 92.5% PDR in Indriya and

≤ 96.33% in FlockLab) manage to solve most of the incon-

sistencies and achieve high accuracy. This observation can be

explained with the argument that using BFs, a node can easily

communicate its entire neighborhood. This means that even if

a neighbor change could not be successfully reported to the

central entity, it is likely to be reported later on. At −10 dBm,

the poor results obtained by all MOPS can be explained by the

low connectivity in both testbeds.

Figure 9 shows the relationship between the number of

inconsistencies and the model accuracy over time in FlockLab

with a TX Power of 0 dBm. At the beginning of an experiment,

SMOG starts without having any knowledge of the network.

During the first minutes, nodes start joining the RPL network

and discovering their neighbors, which leads to missing node

and missing link inconsistencies. This results in temporary

peaks of very high number of inconsistencies and troughs of

accuracy. Eventful and stateful, due to their responsiveness to

neighbor events, solve most of these inconsistencies very fast,

obtaining more than 97% and 96% accuracy, respectively in

less than three minutes. On the other hand, periodic takes

longer to solve its inconsistencies due to its unresponsiveness

to neighbor events achieving Ma(t) ≥ 97% with t ≥ 15 min.

At 0 dBm in Indriya, stateful achieves Ma(t) > 98% in less

than four minutes, while eventful takes more than 14 min to

achieve such accuracy, arguably due to high packet loss at

the beginning of the experiments while RPL creates network

contention. Periodic achieves Ma(t) > 97% with t ≥ 14 min.

Figure 9 also shows that SMOG’s performance is consistent

across experiments. We show this by plotting the standard

deviation for the number of inconsistencies and model ac-

curacy over time for all the MOPS across five experiments.

When we looked at the data collected during the experiments,

we observed that decreasing the TX power comes with an

increase in the standard deviation with respect to the one

observed in Figure 9. We argue that this effect is due to

links getting closer to the transitional region [16] and therefore

producing more unstable conditions in the network. Figure 10

shows the histogram of the duration of inconsistencies for each

MOP, which represents their reactivity to network changes.

Eventful is the most reactive, followed closely by stateful.
Periodic, unresponsive to neighbor events, presents peaks at

(5x − 1.25) min, ∀x ∈ Z
+, as per definition of the MOP.

The second lower peak is the result of the inconsistencies that

could not be resolved with the first report, but were solved

with the second. Overall, the testbed experiments demonstrate

SMOG’s effectiveness under real channel conditions with dif-

ferent densities and topologies. The experiments in Indriya

also demonstrate that SMOG scales up to 100 nodes with

realistic channel conditions and the network features tested.

The results also show a trade-off between energy consumption

and reactivity. Network dynamics produce neighbor events

after network convergence, which helps eventful achieve high

accuracy, and resolve its scalability issues observed in simula-
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(a) Indriya (100 nodes).
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Fig. 8. Testbed Experiments: Model accuracy at t = 1200 s (left), duty cycle (centre), and end-to-end PDR (right) with Bloom filter size m = 256 bits
and k = 8 hash functions.
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Fig. 10. Indriya Experiment: Inconsistency Duration histogram at −3 dBm.
Only solved inconsistencies are considered.

tions. These neighbor events increase the duty cycle of eventful
and stateful, which pay an energy price to be more reactive

than periodic.

3) Impact of Interference: We investigated SMOG’s behav-

ior under controlled interference in FlockLab. To this end,

we emulated a WiFi file transfer interference pattern using

JamLab [17]. We set two nodes as interferers, node #8 and

node #22, which block communication and produce neighbor

changes. Node #8 is located very close to the RPL Root,

and therefore makes it difficult to successfully report SMOG

messages. Node #22 is located in a dense area of FlockLab, di-

rectly interfering with 41.37% of the network. The interference

generated by both nodes directly affects 17 nodes, i.e., 58.62%
of the network. We interleave periods of 20 min without

interference with periods of 15 min with interference. Because

the neighbor lifetime expiration used by NDP is 10 min, we

generated interference for 15 min in order to increase the

chances of neighbor removals. All nodes, including interferers,

use 0 dBm as transmission power and channel 26 to avoid

other sources of interference. The experiments ran for 90 min,

including two periods of interference.

Figure 11 shows the impact of interference on the number

of missing link (Iml(t)) and false positive inconsistencies

(Ifp(t)), model accuracy (Ma(t)), duty cycle, and end-to-end

PDR. During the interference periods, the PDR dramatically

decreases to 9.83%, 16.51%, and 20.63% on average for

eventful, periodic, and stateful respectively, arguably due to the

single-channel feature of ContikiMAC [18]. The high packet

loss triggers more ContikiMAC retransmissions, and an in-

crease in the duty cycle. However, we observe that the MOPS’

duty cycle overhead w.r.t. to the baseline remains relatively

low. The packet loss during interference also makes NDP

operation difficult and nodes suffer to confirm reachability to

their neighbors. This produces neighbor removals and creates

false positive inconsistencies in the network model, conse-

quently reducing the model accuracy. However, we observe

that even during the interference periods Ma(t) > 90% for

all MOPS. SMOG recovers rapidly after interference ceases.

Stateful recovers from 90.89% accuracy observed during the

second period of interference to more than 98% in less than

two and a half minutes. On the other hand, eventful and
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Fig. 11. FlockLab Experiment: Impact of interference on SMOG.

periodic take more than 15 min to recover from 91.87% and

90.89% up to more than 98% and 97.7% accuracy respectively.

The higher amount of messages sent by stateful, due to its

behavior when neighbor events occur allows this MOP to

recover faster and better than the other two. After the second

peak of interference, we also observe a temporary increase

of the missing link inconsistencies, especially with eventful
and periodic, that is the result of the FP discovery mechanism

that removes existing links from the model as explained in

Section II-B3. We argue that the difference between the two

peaks in terms of FP inconsistencies could be related to

RPL creating a sub-optimal topology after the first period of

interference.

Overall, we observe that interference has a significant im-

pact on SMOG, producing numerous neighbor changes that

lead to inconsistencies that cannot be resolved during the

interference periods due to packet loss. However, SMOG with

stateful recovers fast after the interference ceases. Never-

theless, we argue that the impact of interference on SMOG

could be highly reduced by using multi-channel MAC layer

protocols, like MiCMAC [19], which have already been shown

to increase the resilience to interference. We plan to extend our

experiments and to investigate how SMOG performs using a

channel hopping MAC.

IV. RELATED WORK

The goal of supporting centralized routing, decoupling

of control and data plane, and of computing network-wide

communication schedules has led several researchers to build

and maintain a global view of the network. In CentRoute [3],

one of the first solutions for centralized routing in WSNs,

a node includes a link estimate in the join request. Upon

receiving membership requests, the sink merges all entries

into a global membership view. Then, the nodes periodically
push updates towards the sink. Koala [5] decouples control and

data plane at the node level, by implementing a network-wide

routing control plane. Koala’s decisions to select the routes

are driven by the information that the network’s nodes collect.

Once awake, each node collects its neighborhood: identities of

neighbors and the quality of links, i.e., RSSI . To accelerate

the neighborhood collection process, nodes send periodic

beacons which are also acknowledged, generating bidirectional

link info. The nodes select the beaconing interval from an

exponential distribution and suppress their transmissions if

they received a beacon before their timer expires. Hydro [4],

the initial routing protocol for the TinyOS 6LoWPAN stack,

has its collection part based on directed acyclic graphs created

proactively. On demand routes are constructed by the DODAG

root that maintains a global view of the network topology

based on link state reports coming from the network nodes.

Rather than attempt to maintain a complete global view, Hydro

makes the trade-off for reduced control traffic by maintaining

a view of a limited subset of node’s neighbors, normally

only its best (in terms of link quality). Moreover, Hydro

piggybacks the link state information on every outgoing data

traffic packet. This results in obvious limitations in scalability

and adaptability to varying quality of links. pTunes [1] rests

upon a centralized approach. To reason about network-wide

performance, it periodically collects at a central entity reports

from each node that contain local routing and network state

information. For this it uses Glossy [20] network floods:

following the initial flood by the sink, each of the other nodes

initiates a flood in turn, within exclusive slots. Nevertheless,

pTunes builds only the Contiki Collect tree. Sympathy [2]

uses connectivity metrics gathered from nodes, for detecting

and localizing routing failures. The routing table and the set

of neighbors is collected from each node. Passive collection

is done using a plug-in to snoop the routing control packets

broadcasted by nodes. Active collection, from distant nodes

whose broadcasts were not heard by the sink, is done using

a TinyOS module which periodically collects metrics from

different stack layers. Active metric collection is triggered

by a TinyOS timer and all metrics time out after a period.

WirelessHART [7] and ISA-101.11a [6], both provide services

for creating complex data flows that reliably interconnect
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factory devices. Apart from deterministic MACs, the reliability

of multi-hop delivery is increased by using directed acyclic

graphs with redundant paths from source to destination. Both

data link and routing layers of the network nodes are controlled

by a dedicated device, the Network Manager, in a centralized

manner, based on information about the global network state.

All these related works, however, do not aim to characterize

the efficiency of building a complete central network model

nor its accuracy, which instead is the goal of this paper.

V. DISCUSSION AND OUTLOOK

The complete central network model built and maintained

by SMOG can directly inform flow scheduling decisions and

network-wide control and optimization. However, in order

to exploit the network model, the conditions at the physical

layer that enable the communication between the nodes in

the network (e.g., in terms of RSSI or PDR) have to be

known. In this respect, SMOG can be easily equipped with

mechanisms to acquire and report the quality of the links.

For example, SMOG could be configured to report only highly

reliable neighbors (i.e., PDR > 90%). However, this results in

having a view of a limited subset of nodes’ neighbors instead

of a global view. Also, SMOG could use different Bloom filters

to represent subsets of neighbors with different link qualities

(e.g., perfect, intermediate, and poor). This is already on our

agenda and it will enable us to enhance the network model

with a qualitative perspective of the network.

Despite the encouraging results, further work is required to

explore the impact of false positives on mechanisms that make

use of SMOG. For instance, a central routing protocol might

decide to use a false positive link. This would result in data

not being successfully delivered, higher energy consumption

due to an increased number of retransmissions, and possibly

side effects on neighboring nodes. We plan to revisit SMOG’s

design and devise new solutions that leverage multiple BFs to

report different neighborhood subsets.

Finally, a practical use of the SMOG network model would

be its integration in a system where network-wide decisions

(e.g., flow rules) are taken based on QoS application require-

ments and the current network state. These decisions would

then need to be disseminated throughout the network for the

nodes to act accordingly. Changes in the network state (e.g.,

a neighbor removal or a node failure) would trigger model

updates that might cause a recomputation of the network

decisions previously taken. In some cases, this might be

followed by a new dissemination process to update or insert

new rules in order to adapt to the new network state.

VI. CONCLUSIONS

We presented SMOG, a mechanism to build and maintain

a complete and accurate network topology model. At its

core, SMOG uses Bloom filters to represent neighborhood

information and offers multiple modes of operation to report

this information to a central entity. Our extensive evaluation,

in simulations and two testbeds, clearly shows that SMOG can
build and maintain a model that scales and reacts to common

network dynamics.

To the best of our knowledge, our study is the first that

looks at the factors that impact the effectiveness of building

and maintaining a central model. Furthermore, our analysis

indicates promising results for accuracy and reactivity that can

be used for central decision making. As such, we consider

SMOG to be the next step on the stairway towards centralized

WSN control.
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